
.com

The Dinosaur Kit (MSRP $20.00)

What’s in The Bag?

Qty Dinosaur Parts
1 1602 LCD 16x2 Character Display w/ I2C Controller

1 Arduino Nano Clone

1 74HX4051N DIP-16 Multiplexer

1 16 Pin Dip Socket

1 Ceramic Capacitor

1 Resistor

6 Tactile Push Button Switch 12x12x4.3mm

40 Pin Header Connector Male 2.54mm Pitch Single Row 40 Pin

14 Female – Female Jumper Wire 20cm 2.54mm 1p-1p

5 Jumbo Wood Craft Sticks

1 I2C / Power Hub PCB

1 Controller PCB

 Additional Parts
1 PCB Prototype Board

1 USB Mini to Micro Adapter

1 Mini USB cable

You Will Need
• Hot Glue Gun

• Soldering Iron

.com

Dinosaur Assembly

View the Assembly Video at:

https://retrolcd.com/Curriculum/Dinosaur

There are three key bits that need to be assembled.

• Arduino

• I2C Hub

• Controller

https://retrolcd.com/Curriculum/Dinosaur

.com

Arduino
The first is the Arduino. That will require soldering the header pins onto the board. The 6 pins on the

back aren’t required. They are power, ground, reset and a few digital pins that are duplicated. They are

used to program the Arduino instead of using the USB connection.

https://www.quora.com/What-is-the-function-of-ICSP-pins-on-the-Arduino-Uno

I2C Hub
The 2 pin connectors are for power and the 4 pin connectors are for I2C connectors.

The rightmost pin is generally set to ground, the one next to it is 5V and then SDA and finally the left

most pin is SCL.

When using standard 4 pin wiring, black corresponds with ground, red is 5V.

To put the I2C Hub together, simply solder in the header pins. Only 8 are needed for Dinosaur but you

may want to fill in more so you can use this hub for other projects that have more connected I2C

devices.

The Controller
The controller has a capacitor, resistor, 12mm buttons and IC with socket. The capacitor value does not

really matter. And it does not matter which way you put it in. The capacitor is simply there to smooth

the voltage to the integrated circuit.

The resistor value is not particularly important either. It serves as a pull-down resistor on the output pin

of the integrated circuit. However, you will see later in the source code that we explicitly ground the

output pin before checking the value. Without doing this, the voltage may not dissipate between reads

causing the code to think buttons are pushed that aren’t.

There is no set order anything needs to be soldered in, but it may be easiest to start with the buttons

and the IC socket so that the capacitor and resistor are not pressing against the workspace when

soldering them in. While there are two output pins, only one is needed. The second output just makes

it easier to trigger something else when a button is pressed. There is room for two power connectors,

but since we’re using the I2C hub, it is not necessary that we populate it.

The reason for using the IC socket is just to ensure that if the Multiplexer chip is bad, it can be replaced.

The notch on the IC needs to point towards the ABC connectors. We will need all three header pins

available as those pins are how we select each of the 8 buttons to see if they are pressed.

https://www.quora.com/What-is-the-function-of-ICSP-pins-on-the-Arduino-Uno

.com

Wiring It Up

From Arduino
D7 -> Output pin of controller

D5 -> C on controller

D4 -> B on controller

D3 -> A on controller

GND -> GND pin of hub

5V -> 5V pin of hub

A5 -> SCL on hub

A4 -> SDA on hub

From Hub
5V -> 5V on Display

GND -> GND on Display

SCL -> SCL on Display

SDA -> SDA on Display

GND -> GND on Controller

5V -> 5V on Controller

.com

Dinosaur

.com

Contents
About Dinosaur ... 4

Breaking It Down ... 5

Embrace .. 6

Extend ... 7

Extinguish .. 8

Coding the Game .. 9

Set Up the Screen .. 9

Draw a Pixel... 11

Move a Pixel .. 14

Draw More Pixels .. 14

Move pixels based on user input .. 17

Recognize and react to collisions between pixels... 19

Dinosaur.ino .. 22

CactiController.h ... 29

CactiController.cpp ... 30

DinoController.h ... 31

DinoController.cpp .. 34

WeedController.h ... 37

WeedController.cpp .. 38

Bill of Materials ... 40

1602 LCD 16x2 Character Display w/ I2C Controller - $2.00 – 1 Req. ... 40

Arduino Nano Clone - $1.90 – 1 Req. .. 41

74HX4051N DIP-16 Multiplexer - $2.04 / 10, $0.204 each – 1 Req. ... 42

Ceramic Capacitor - $1.40 / 300, $0.0047 each – 1 Req. .. 43

Resistor - $2.48 / 600, $0.0041 each – 1 Req. .. 44

Tactile Push Button Switch 12x12x4.3mm – $1.79 / 50, $0.0358 each – 4 Req. 45

Pin Header Connector Male 2.54mm Pitch Single Row 40 Pin - $1.85 / 30 x 40, $0.0015 each – 16 Req.

 .. 46

Female – Female Jumper Wire 20cm 2.54mm 1p-1p – $0.78 / 40, $0.0195 each – 14 Req 47

I2C / Power Hub - $2.00 / 10 - $0.20 each – 1 Req. .. 48

Controller - $2.00 / 10 - $0.20 each – 1 Req. .. 49

.com

Jumbo Wood Craft Sticks - $5.30 / 200 – $0.0265 each – 5 Req. ... 50

Summary ... 51

.com

About Dinosaur
To start playing Dinosaur in the Chrome Web Browser put

chrome://dino

In the URL bar

Initially you will see

Press the up arrow to start playing

Press the up arrow to jump and avoid the cacti

.com

When you hit a cactus, you see

Breaking It Down
The first thing we want to consider is what the controls are. In this version of the game, there is only

one button: up. You can jump. That’s it.

You may have noticed already that the controller for the Arduino version uses 4 buttons. We could have

gotten away with one, but rather than simply make an exact copy of the game, it will be enhanced a bit.

Embrace, Extend, Extinguish

In other words, apply your own creativity to a base idea so that at some point, your version is

completely unrecognizable from the source material.

Now that we know what the controls are, we look at the graphics. It’s probably best to think of the

graphics in terms of the hero and the enemies.

Our hero is the dinosaur. He’s the character the user controls.

Our enemies are the cacti. They are to be avoided. There are two types: big and small.

Now, we need to consider how they move.

Our hero jumps.

Our cacti run.

When breaking things down it’s important to look at patterns. We can think of the game in terms of the

hero moving or in terms of the cacti moving. And in this case, it’s easier to think of it in terms of the

cacti running towards the dinosaur.

You could imagine that they are cars and we have some crazy person leaping over them rather than get

hit by them as they pass.

.com

Next, we think about how the player scores points. Some games have an ending. This game does not.

You simply get one point for each cactus you jump over.

There are no hit points. As soon as you hit a cactus, the game is over.

Embrace
Step 1 is to embrace the game as it is presented.

We’ll need a controller with at least 1 button.

We’ll need to design graphics for a dinosaur and two cacti.

Use paper to draw out your version of a dinosaur, a large cactus and a small cactus.

It doesn’t need to be fancy. The thing to keep in mind is the limitations of the graphics display we’ll be

using. We’ll be using a 16x2 character display which limits us to 5x8 pixels for each sprite. However, we

can combine sprites to make bigger sprites. The other limitation to consider is that we can only have 7

custom sprites loaded into the display at a time. We can swap them out, but only 7 at a time.

.com

The way I’ve designed my sprites is that the cacti use one sprite each, the tumbleweed has 4 frames of

animation and the hero takes up 4 sprites at once and has 4 animation frames.

That gives us 2 cacti sprites, 1 tumble weed sprite and 4 hero sprites that will be loaded onto the display

at any given time which maxes out the available 7.

Extend
You probably noticed that there is no tumbleweed in the original game. This is the first extension.

Rather than only having the hero jump over enemies, there is a new enemy: the tumbleweed which the

hero must dodge by either jumping over it while it’s on the ground, or duck under it while it’s in the air.

The tumbleweed bounces as it approaches the player using a simple SIN function

Since our hero can jump, we need a jump animation frame. As our screen space is limited, the hero

goes into a crouch position on the first or second line only of the display depending on whether he’s

jumping or ducking.

When our hero is hit, we don’t need to change the body, so we just have two additional sprites that

make up his head when he throws his head back in pain from getting hit.

Being able to duck is the second extension.

.com

And finally, rather than have a game over from getting hit, the score will just decrease until it reaches

zero. If players want to compete, they can simply set a time limit and see who can get the highest score

in a fixed amount of time.

Extinguish
How would you change the controls, graphics, scoring and “plot” of the game while still being limited to

7 different sprites on the screen at a time and a 16x2 display?

.com

Coding the Game
When it comes to coding any game there is a good set of steps to help you break down the problem so

you can tackle pieces at a time in a logical progression.

1. Set Up the Screen

2. Draw a pixel

3. Move a pixel

4. Draw more pixels

5. Move pixels based on user input

6. Recognize and react to collisions between pixels

7. Implement scoring rules

Set Up the Screen
Dinosaur makes use of the LiquidCrystal_I2C library which allows us to talk to the character display over

I2C which requires far fewer wires than trying to talk directly to its data lines.

This library is included with the downloadable source code to avoid issues with updates or variations of

the library that don’t work with the rest of the code.

Next, we configure the library for the specific display we are using.

Namely, the address and resolution. We are using a 16x2 character display and it is configured to be at

address 0x3F. Notice that the comment says 0x27. This is because 0x27 is often the address specified in

sample code as it is often the address set. But not always.

The location of the character display is set by the factory. There are three pairs of connectors on the

board that can be connected giving 7 additional address lines that can be selected.

.com

Note the three sets of connectors above the blue square on the left. They can be soldered together to

change the address of the controller.

https://retrolcd.com/Help/I2CFinder

Use this tool to figure out what the memory location of your display is. Make sure your display is

properly connected to the Arduino before running it. It cycles through all the possible addresses and

indicates which ones have a device connected. Don’t connect more than one unknown device at a time

or you won’t know which address is for which device. Fortunately, for this project, we only need one.

There are three commands really needed in the Setup function:

1. Begin

2. Clear

3. Backlight

Begin tells the controller to start listening. Clear, clears out the display so it is empty of any characters.

And Backlight turns on the backlight. The blue square on the controller is what adjusts the brightness /

contrast of the display.

https://retrolcd.com/Help/I2CFinder

.com

The print function works just like Serial.print and prints out whatever is contained in the string.

Draw a Pixel
When it comes to character displays, we don’t really have pixels. It’s generally not recommended to try

to force something to do something it wasn’t designed to do.

Since we are working with a character display, the first task is to put a character on the display in a user-

defined location.

This shows that you have control of the display.

If you can put the letter “A” on the character display at a specific location, you have complete control

over it.

Whenever you are working with graphics it is important to have a double buffer. The first buffer is

visible to the user. This is the character display. The second buffer is where we build up what will be

shown on the first buffer. The character display does not provide a second buffer and so we must

implement our own.

Since we are working with printed text, the buffer needs to be an array of char data types. Notice that

the screen array size is equal to screen_x * screen_y. We could have defined Screen as [2][16] but it is

easier to just use a single dimension array.

Rather than draw directly to the LCD Display, we will now write a few functions to draw to our second

buffer so that the user isn’t subjected to visual artifacts like flickering as we clear the screen and redraw

it.

The first thing we need is a way to clear out the buffer so it’s ready for the next frame. There are two

things to notice here: the first is that we are not referencing screen_x or screen_y, we are just using the

fixed value of 32. This saves us a calculation as we’re not writing a generic library anyway. If you

wanted these functions to be compatible with a variety of displays, it would be necessary to use the

variables rather than a fixed value.

.com

The second thing to notice is that we’re not writing zero to each of the array elements. Instead we are

using the space character. This is because zero means it is the end of the string. Remember, we are

using a character display and will be writing strings to it, so we must follow the rules of strings. And the

most fundamental rule of strings is that they must end in a null (aka zero) value.

The next function we need is the PlotCHAR function which will place characters into our buffer at a

specified location.

The first check is there to demonstrate how to ensure that we are not writing outside the bounds of the

buffer. However, it does not check that the given x and y values are valid for our physical display. For

example, if we passed in y = 0 and x = 24, that would not extend past the boundary of the buffer, but our

display is only 16 characters wide so the character would end up on the 2nd line which is not the

expected behavior.

The four conditions after the first ensure that the given x and y values are within the bounds of the

physical display. If they aren’t, the function returns and does not put the given CHAR in the buffer.

If x and y fit in our array and they are within the physical bounds of the display, they we use the simple

math function to store the character in the buffer.

.com

When designing these systems, it is best to draw things out. Especially when they’re small. Once you

know the rule, it scales to any size. You can see from the picture that the second half of the array

corresponds to the second row of the display. Multiplying y by the width of the physical display gives us

the section of the buffer that corresponds to the physical row.

Notice that we are using the CHAR variable type. Since we are dealing with printed characters, we need

to use a signed variable, or the display will not interpret the characters correctly.

And of course, we need a way to push this virtual screen to the physical screen.

Notice that our line variable has 17 characters. This is because we need to put in a character zero or the

display will not stop trying to read characters after the first 16.

What we are doing here is copying 16 bytes of our buffer at a time and printing them out to the screen.

There is a memcpy function which could replace the x loop, but this is our first game project and we’ll

stick to a more basic solution.

By writing whole lines at a time, we avoid the problem of flicker had we just cleared and drawn directly

on the physical display. Using spaces allows us to clear our screen and put out the new display in one

step.

We could reduce this to writing a single line to the display using a carriage return, memcpy and by

increasing the line array. Or even by modifying our main screen buffer and how it calculates where to

put characters in it. I will leave that as a challenge to readers.

Now we know how to define a custom buffer for a display. Write to it. And push it out to the physical

display.

.com

Move a Pixel
Now that we can plot to our screen, it’s time to learn how to move a pixel. For this step we will think

about our game and how our character moves. In the Chrome version, the dinosaur only moves up

when it jumps. So, we could say, “we just need a y position.” But we’re working with a screen that only

has 2 y positions and we’re introducing a tumbleweed that bounces so our character may need to move

along the x axis in order to position themselves to be able to avoid being hit. It is common in auto-

scrolling games that the player has some freedom of movement in the same axis the game is scrolling.

Jumping is going to be handled a bit differently which we will cover later. So, for our movement we will

stick to moving left and right.

That gives us a single variable that we need to represent the position of the player.

Then, in our setup function we have

In our loop function we can change player_x and use the PlotCHAR function to see the character we’re

plotting move on the display.

I’m not going to put the code for this here and will leave it as an exercise for the reader to create

working code that moves a character back and forth on the display.

Draw More Pixels
Before we start drawing more pixels on the screen we need to think about their purpose and how they

will move. We will be having our cacti move towards the player so the player position will not be used

to calculate the position of the cacti. They are all separate entities. And we want to be able to move the

cacti and some controllable speed. There are several ways to do this. One way is to move the cacti only

certain frame numbers and have a fixed frame rate. The other is to use the float variable type so we can

adjust their position in very small increments and then round when rendering their position.

Again, everything only really moves along the x-axis. This gives us 10 cacti that can be going at once.

When a cactus reaches the left side of the screen it will reset to another random x position.

We only need an array big enough to hold as many cacti as can be displayed on the screen at once.

.com

In our setup function we can now loop through the array of cacti and set their initial x positions. We will

cover what cacti_sprite is later.

The variable max_x is a defined as a global and is set to 500. That allows our cacti to be up to 500

characters away from the left side of the screen. This is how it change the distance between cacti.

Because the minimum of the random function is 17, they will never immediately appear on the screen.

And by having a maximum of 500, it can give the player a little break before they reach the visible

screen.

In our loop function we now add

Notice that we cast the cacti_x variable to an int which cuts off the decimal portion. And they are

always rendered at y position 1 which is the bottom row of the screen.

Remember we also added a tumbleweed.

The tumbleweed can be in the top row or bottom row, so we need a y value as well as an x value.

In the setup function, we default the x location of the weed to be

Which puts the weed well off screen, so the player does not encounter it right away.

To calculate the y position of the weed we use the sin function along with the total time which goes

from 0 to 60 seconds.

In our loop function we now have

Which renders the weed based on the rounded x and y values. We’ll cover what the “5” is later.

Our cacti move using a simple bit of math

.com

This causes them to move 4 spaces per second.

.com

Move pixels based on user input
We’ll be using the controller library found here

https://retrolcd.com/KeyInCode

Type it in once, and then you can reuse it as many times as you want.

In Controller.h you will find four #define macros

Make sure you either wire up the controller to the same pins or update Controller.h to match your

wiring.

Then in our loop function we have

And call our HandleInput function

https://retrolcd.com/KeyInCode

.com

We are using the IsPressedAgain and MarkUnreleased methods so that the user cannot just hold down

the button. They must press and then release the button before it can be pressed again.

There is very simple logic for the controllers. The user and move the hero left or right and they can jump

or crouch.

We’ll ignore the dino class for now. All we are doing is checking to see if buttons are pressed and

modifying variables depending on which buttons are pressed. Notice that we are using a series of if-else

statements. This prevents the user from pressing more than one button per frame. It is especially

important for the Jump and Crouch routines as they are states and starting both would cause problems.

Once the player is in the Jump or Crouch state they cannot go into another state until those states

complete. The first “if” verifies that the user is not in a jump or crouch state before processing any

input.

.com

Recognize and react to collisions between pixels
Now that everything is moving around the screen it’s time to figure out when things hit each other. Or

when things go out of bound.

The rules of the game are that when something reaches the left side of the screen without hitting the

player, the player gets points. If something hits the player, the position of it resets and the player loses

points.

The logic which handles objects reaching the left side of the screen is found in the function

HandleSpriteUpdates

This is where we move the cacti and the weed left every frame and, also check to see if it has gone off

the left side of the screen. If a cactus goes off the left side of the screen, then the player gets a point. If

the weed goes off the left side of the screen, the player gets 10 points.

In either case, the x location for the enemy resets.

In the case of the cactus, the sprite can also change.

On the Arduino, the minimum value of random is inclusive but the upper bound is exclusive. This means

that although the random function is passed 6 and 8, it can only return 6 or 7.

We’ll cover sprites later.

In addition to the boundary detection, we also need to detect whether the cacti or weed have hit the

player. For that we have a dedicated function to help keep the code manageable.

.com

.com

We start off by checking to see if the player has collided with the weed. The weed can be up in the air

or down on the ground. The player can be standing, jumping or crouching. It may help to create a truth

table to ensure all the possibilities are covered.

Player Is Weed Is Collision

Standing In Air Yes

Standing On Ground Yes

Crouching In Air No

Crouching On Ground Yes

Jumping In Air Yes

Jumping On Ground No

We can see from this truth table that there is a 66% chance that the weed is going to hit the player.

Therefore, we give 10 points to the player for dodging it and only take away 5 points if they get hit. In 6

attempts they will gain 10 points twice and lose 5 points 4 times. Which works out to zero points given

completely random chance. That leaves skill as the deciding factor.

If the dino is in the jump state, then we check to see if the weed is Up. If it’s not, there’s no chance of

collision. If it is, then we check to see if the weed’s x position is within the player sprite. And if so, there

is a collision, points are lost and the weed resets.

If the dino is in the crouch state, then we check to see if the weed is Down. If it’s not, there’s no chance

of collision. If it is, then we check to see if the weed’s x position is within the player sprite. And if so,

there is a collision, points are lost and the weed resets.

If the dino is in the default state, which is standing, then we only need to check to see if the weed’s x

position is within the player’s sprite and if so, points are lost and the weed resets.

When it comes to the cacti, we just check to see if the dino is jumping, and if it’s not, we see if the

cactus is in the same position as the player. Notice that in the case of the cactus, there is only one space

being checked while with the weed, three spaces are being checked when jumping or crouching and two

are being checked when standing. This is because the jump and crouch sprite are 3 characters wide and

the standing sprite is 2 characters wide. For the cactus, we’re just making it a little easier for the player

to avoid them. There is a bit of extra time to jump out of the way.

.com

Dinosaur.ino

.com

.com

.com

.com

.com

.com

.com

CactiController.h

.com

CactiController.cpp

.com

DinoController.h

.com

.com

.com

DinoController.cpp

.com

.com

.com

WeedController.h

.com

WeedController.cpp

.com

.com

Bill of Materials

1602 LCD 16x2 Character Display w/ I2C Controller - $2.00 – 1 Req.
https://www.aliexpress.com/item/1PCS-LCD-module-Blue-screen-IIC-I2C-1602-for-arduino-1602-LCD-

UNO-r3-mega2560/32763867041.html

If you hook up this display and all you get are white blocks on the top row, you have likely configured

the wrong address in your code.

See RetroLCD.com for a helpful sketch that will tell you what address your display is listening on.

https://www.aliexpress.com/item/1PCS-LCD-module-Blue-screen-IIC-I2C-1602-for-arduino-1602-LCD-UNO-r3-mega2560/32763867041.html?spm=a2g0s.9042311.0.0.262f4c4d5Zwf8U
https://www.aliexpress.com/item/1PCS-LCD-module-Blue-screen-IIC-I2C-1602-for-arduino-1602-LCD-UNO-r3-mega2560/32763867041.html?spm=a2g0s.9042311.0.0.262f4c4d5Zwf8U

.com

Arduino Nano Clone - $1.90 – 1 Req.
https://www.aliexpress.com/item/Freeshipping-Nano-3-0-controller-compatible-for-arduino-nano-

CH340-USB-driver-NO-CABLE/32341832857.html

Note: This board is recognized as an Ardunio Duemilanove or Diecimila, ATmega 328P. If your IDE has

trouble uploading, it may be because you’ve selected the wrong board variant. The Duemilanove is the

version of the Arduino before the UNO. To test the board, simply plug it into your USB port and view

the serial monitor. It will spit out all the ASCII character codes.

https://www.aliexpress.com/item/Freeshipping-Nano-3-0-controller-compatible-for-arduino-nano-CH340-USB-driver-NO-CABLE/32341832857.html?spm=a2g0s.9042311.0.0.b5ef4c4dLOZbsg
https://www.aliexpress.com/item/Freeshipping-Nano-3-0-controller-compatible-for-arduino-nano-CH340-USB-driver-NO-CABLE/32341832857.html?spm=a2g0s.9042311.0.0.b5ef4c4dLOZbsg

.com

74HX4051N DIP-16 Multiplexer - $2.04 / 10, $0.204 each – 1 Req.
https://www.aliexpress.com/item/10pcs-free-shipping-74HC4051N-74HC4051-SN74HC4051N-DIP-16-

Multiplexer-Switch-ICs-8-CHANNEL-ANALOG-MUX-DEMUX/32416713940.html

https://www.aliexpress.com/item/10pcs-free-shipping-74HC4051N-74HC4051-SN74HC4051N-DIP-16-Multiplexer-Switch-ICs-8-CHANNEL-ANALOG-MUX-DEMUX/32416713940.html?spm=a2g0s.9042311.0.0.262f4c4d5Zwf8U
https://www.aliexpress.com/item/10pcs-free-shipping-74HC4051N-74HC4051-SN74HC4051N-DIP-16-Multiplexer-Switch-ICs-8-CHANNEL-ANALOG-MUX-DEMUX/32416713940.html?spm=a2g0s.9042311.0.0.262f4c4d5Zwf8U

.com

Ceramic Capacitor - $1.40 / 300, $0.0047 each – 1 Req.
https://www.aliexpress.com/item/Ceramic-capacitor-2PF-0-1UF-30-valuesX10pcs-300pcs-Electronic-

Components-Package-ceramic-capacitor-Assorted-Kit-Free/32305092269.html

The rating really doesn’t matter. In fact, this part is probably optional.

https://www.aliexpress.com/item/Ceramic-capacitor-2PF-0-1UF-30-valuesX10pcs-300pcs-Electronic-Components-Package-ceramic-capacitor-Assorted-Kit-Free/32305092269.html?spm=a2g0s.9042311.0.0.27424c4dL6kfnx
https://www.aliexpress.com/item/Ceramic-capacitor-2PF-0-1UF-30-valuesX10pcs-300pcs-Electronic-Components-Package-ceramic-capacitor-Assorted-Kit-Free/32305092269.html?spm=a2g0s.9042311.0.0.27424c4dL6kfnx

.com

Resistor - $2.48 / 600, $0.0041 each – 1 Req.
https://www.aliexpress.com/item/Free-Shipping-600-Pcs-1-4W-1-20-Kinds-Each-Value-Metal-Film-

Resistor-Assortment-Kit/32323198194.html

This resistor is used to pull down the buttons when they’re not pressed so that you don’t get invalid

button pushes. This is also handled in code to ensure when a button is let go, the Multiplexer doesn’t

think it is still pressed. 220ohm is what I use but there is no strict requirement.

https://www.aliexpress.com/item/Free-Shipping-600-Pcs-1-4W-1-20-Kinds-Each-Value-Metal-Film-Resistor-Assortment-Kit/32323198194.html?spm=a2g0s.9042311.0.0.27424c4dL6kfnx
https://www.aliexpress.com/item/Free-Shipping-600-Pcs-1-4W-1-20-Kinds-Each-Value-Metal-Film-Resistor-Assortment-Kit/32323198194.html?spm=a2g0s.9042311.0.0.27424c4dL6kfnx

.com

Tactile Push Button Switch 12x12x4.3mm – $1.79 / 50, $0.0358 each – 4 Req.
https://www.aliexpress.com/item/R242-03-12-12-4-3MM-touch-switch-micro-switch-vertical-feet-

4/32691509241.html

The PCB supports up to 8 buttons. 4 are required for Dinosaur.

https://www.aliexpress.com/item/R242-03-12-12-4-3MM-touch-switch-micro-switch-vertical-feet-4/32691509241.html?spm=a2g0s.9042311.0.0.27424c4dwRAnaY
https://www.aliexpress.com/item/R242-03-12-12-4-3MM-touch-switch-micro-switch-vertical-feet-4/32691509241.html?spm=a2g0s.9042311.0.0.27424c4dwRAnaY

.com

Pin Header Connector Male 2.54mm Pitch Single Row 40 Pin - $1.85 / 30 x 40,

$0.0015 each – 16 Req.
https://www.aliexpress.com/item/McIgIcM-60PCS-1-x-40-Pin-2-54mm-Spacing-Single-Row-Breakable-

Male-Pin-Header-Connector/32809323787.html

https://www.aliexpress.com/item/McIgIcM-60PCS-1-x-40-Pin-2-54mm-Spacing-Single-Row-Breakable-Male-Pin-Header-Connector/32809323787.html
https://www.aliexpress.com/item/McIgIcM-60PCS-1-x-40-Pin-2-54mm-Spacing-Single-Row-Breakable-Male-Pin-Header-Connector/32809323787.html

.com

Female – Female Jumper Wire 20cm 2.54mm 1p-1p – $0.78 / 40, $0.0195 each – 14

Req
https://www.aliexpress.com/item/Free-Shipping-80pcs-dupont-cable-jumper-wire-dupont-line-female-

to-female-dupont-line-20cm-1P/1728848121.html

https://www.aliexpress.com/item/Free-Shipping-80pcs-dupont-cable-jumper-wire-dupont-line-female-to-female-dupont-line-20cm-1P/1728848121.html
https://www.aliexpress.com/item/Free-Shipping-80pcs-dupont-cable-jumper-wire-dupont-line-female-to-female-dupont-line-20cm-1P/1728848121.html

.com

I2C / Power Hub - $2.00 / 10 - $0.20 each – 1 Req.

.com

Controller - $2.00 / 10 - $0.20 each – 1 Req.

.com

Jumbo Wood Craft Sticks - $5.30 / 200 – $0.0265 each – 5 Req.
https://www.michaels.com/creatology-jumbo-wood-craft-sticks/10334892.html

https://www.michaels.com/creatology-jumbo-wood-craft-sticks/10334892.html

.com

Summary

Part Price Units Per
Unit

Required Total

1602 LCD 16x2 Character Display w/ I2C
Controller

$2.00 1 $2.0000 1 $2.0000

Arduino Nano Clone $1.90 1 $1.9000 1 $1.9000

74HX4051N DIP-16 Multiplexer $2.04 10 $0.2040 1 $0.2040

Ceramic Capacitor $1.40 300 $0.0047 1 $0.0047

Resistor $2.48 600 $0.0041 1 $0.0041

Tactile Push Button Switch 12x12x4.3mm $1.79 50 $0.0358 4 $0.1432

Pin Header Connector Male 2.54mm Pitch
Single Row 40 Pin

$1.85 1200 $0.0015 16 $0.0240

Female – Female Jumper Wire 20cm 2.54mm
1p-1p

$0.78 40 $0.0195 14 $0.2730

Jumbo Wood Craft Sticks $5.30 200 $0.0265 5 $0.1325

I2C / Power Hub $2.00 10 $0.2000 1 $0.2000

Controller $2.00 10 $0.2000 1 $0.2000

Total $23.54 $5.0855
* Prices are accurate at a point in time and are subject to change – every effort is made to choose

generic parts that have little risk of going out of production

.com

Character Display Sprites
https://retrolcd.com/Components/LCD1602

The 1602 stands for 16x2 which is 16 characters wide and 2 lines tall. The default board has 16 pins

which is a lot to hook up. Fortunately, there is a corresponding controller, the HD44780, that goes with

it.

Typically, the controllers are sold with the display and the pair go for around $2 each direct from China.

With this board attached to the Character Display, you can use I2C which requires only 2 pins and

power. And you can connect multiple displays.

https://retrolcd.com/Components/LCD1602

.com

Built-In Characters

The 1602 has 128 built in characters. We use the CHAR datatype which is a signed 8-bit value and stick

to the values 0-127. Generally, character 0 is the null character which terminates strings. When printing

a line of text, the processor looks for the 0 so it knows when to stop reading memory. If you leave off

the zero, the processor will continue to read into memory that it wasn’t supposed to read.

When first learning how to print text on the display and move things around on it, it may be easier to

just use the built-in characters before moving onto custom characters.

.com

Code Page 437
https://en.wikipedia.org/wiki/Code_page_437

This is the character set adopted on the original IBM PC. Unfortunately, the character set locked into

the 1602 misses many of the very useful symbols such as those commonly used for playing cards and the

faces often used in early games.

There is an interesting history of the ASCII smiley face found at

http://www.vintagecomputing.com/index.php/archives/790/the-ibm-smiley-character-turns-30

You can see from the character list of the 1602 that the first 17 characters are empty. Instead of leaving

the first 32 characters in ASCII blank as they are reserved control characters, the developers decided to

put in some characters that would be useful for character displays which were not interpreting those

bytes for control purposes. The extended characters (128-255) were used extensively in text based user

interfaces.

ASCII character 13 is still the carriage return and ASCII character 10 is still the new line character.

This original list of characters may serve as a guide for custom characters you may want to put into your

own project.

https://en.wikipedia.org/wiki/Code_page_437
http://www.vintagecomputing.com/index.php/archives/790/the-ibm-smiley-character-turns-30

.com

Creating Your Own Custom Sprites
The 1602 allows you to program up to 8 custom characters in locations 0 through 7. You may recognize

0 as the null character. It is best to simply not use it as a custom character and limit yourself to memory

locations 1 through 7.

The first thing you need to know is that each character is 5 pixels wide and 8 pixels tall. While you can

buy graphing paper to work with, there are also online resources to generate custom graph paper to

print out yourself.

https://incompetech.com/graphpaper/

The second thing to keep in mind is that the limit is 7 different custom characters displayed at once. You

can change characters as many times as you want in your program.

The Dinosaur game demonstrates several ways of rendering sprites.

There are two cactus sprites. One big and one little. These never change.

In Dinosaur.ino

https://incompetech.com/graphpaper/

.com

In CactiController.h

This puts the two cactus sprites into slot 6 and 7. This never changes throughout the game.

Next, we have a tumbleweed. The tumbleweed has 4 frames and uses a state machine to keep track of

which frame is loaded into the display and which should be loaded next.

In WeedController.cpp

Every frame we call the Update method along with the duration of the current frame. Then, if the total

time that has elapsed is more than the current state is expecting, then the weed switches to the next

state.

.com

This is just a sample of the states. This could probably be simplified but it demonstrates how we use a

transition state to update the frame stored in the memory of the display and then switch to another

state so that we are not continually loading the frame if this method is called again. We do not want to

load the current frame of animation every time we render a frame of the game. We only need to load it

when it needs to change.

.com

There is a variable in the WeedController class which holds the definition of the current frame. When

we call SetFrame this variable is updated, and we set a variable that the sprite has changed. This tells

the main Dinosaur program to update the display.

In Dinosaur.h, the HandleSprite change function handles checking the sprite change flag and if it’s set, it

stores the frame from the weed class into slot 5 of the character display and then resets the flag so it

isn’t continually loaded.

The Dinosaur sprite builds on this. You may have noticed that the Dinosaur is made up of 4 characters.

1 tumbleweed character + 2 cactus characters + 4 dinosaur characters = 7. Which is the maximum

number of custom characters we can have at one time.

In our HandleSpriteChange function we also have

.com

TL = Top Left

TR = Top Right

BL = Bottom Left

BR = Bottom Right

All the sprites are defined in DinoController.h

All the characters use the same convention to make it easier to keep track of where to draw them on

the display.

In our main loop function we have

This checks the state of the dinosaur and plots the characters that make it up in the appropriate

location. When walking, there are 4 characters in use, while when jump or crouching, there are 3.

Jumping and crouching use the same characters, but they are drawn on the top line when jumping and

on the bottom line when crouching.

.com

Summary
Whether you’re using a character display or some other method to display graphics, the general

principles will remain the same: state machines are used to transition between frames of animation,

large sprites are broken up into smaller sprites, sprites are swapped in and out of memory, etc.

The original NES had a limited number of sprites that could be in memory at once just like the 1602. The

NES limited developers to 64 sprites on the screen at once but only 8 per scanline. So, you could not

have 9 goombas in a row.

https://megacatstudios.com/blogs/press/creating-nes-graphics

A big part of game development is understanding the limitations of the hardware you are developing on.

As you become more proficient you may find ways to do things that weren’t thought of before. Late

NES games had much better graphics than earlier ones. While the original intent of the NES was to

allow scrolling in only the vertical or horizontal direction, eventually people figured out how to do

diagonal scrolling. This required working within other limitations which is why Super Mario Bros 3 put

bars around the screen to hide the artifacts at the edges of the screen.

https://megacatstudios.com/blogs/press/creating-nes-graphics

Key-In Code: The Controller

.com

This code is used as the driver for the RetroLCD.com controller board which makes use of an 8bit Multiplexer and up to 8

pushbutton switches.

.com

Don’t be a Copypasta.
An important part of the learning process is typing in code. This forces you to read every line of code, digest it, and will

give you ample opportunity to practice and improve your typing skills.

Most code provided by RetroLCD.com will be provided in a way which discourages copying and pasting.

In fact, as projects advance, a lot of code won’t even be provided. Programming is about understanding a problem and

figuring out how you would go about solving it. As you get better, your solutions will be better.

Provided code will focus on foundational knowledge like the alphabet, words and sentence structure. But; the idea is

not to tell you how to write your book.

Print these Key-In Codes, trim and rotate the sheets to a comfortable angle and type them in. Keep a notebook handy

so you can write down notes about what you learn.

.com

Controller.h

.com

Controller.cpp

.com

Soldering
Supplies

5x7cm Solder Finished Protoype PCB: $0.29 each

Network Cable: $2-3 each

USB Soldering Iron: $5 each from China

USB Adapter (1.6Amp minimum): $5 each

Solder: $5-10, nothing fancy needed

Task
Step 1:

The perfboard is an 18x24 grid of holes. Mark off 18x24 squares on graph paper and create a line-based design aligned
to the squares.

Step 2:

Cut connectors off network cable and pull out the wire. Cut to size and trim the ends to recreate your design in wire with
the perfboard. Solder the ends of your various wires to the perfboard.

.com

.com

References

https://incompetech.com/graphpaper

https://www.amazon.com/HiLetgo-Finished-Prototype-Circuit-
Breadboard/dp/B07BPY8KJG/ref=sr_1_6?ie=UTF8&qid=1544588325&sr=8-6&keywords=5x7cm+prototype+board

https://www.amazon.com/AmazonBasics-One-Port-USB-Wall-
Charger/dp/B0773JFWDC/ref=sr_1_3_acs_sk_pb_1_sl_1?ie=UTF8&qid=1544588356&sr=8-3-
acs&keywords=usb+adapter

https://www.amazon.com/Ethernet-Cable-Meters-Network-
Internet/dp/B00GBBSNMY/ref=sr_1_10?s=pc&ie=UTF8&qid=1544588433&sr=1-
10&keywords=network+cable&refinements=p_n_feature_keywords_five_browse-bin%3A7800924011

https://www.aliexpress.com/item/Soldering-Iron-Mini-USB-Electric-Portable-Soldering-Gun-with-LED-Indicator-Hot-
Iron-Welding-High-
Quality/32712238304.html?spm=2114.search0104.3.8.5c7415d9eNdMHh&ws_ab_test=searchweb0_0,searchweb20160
2_1_10065_10068_10130_10890_10547_319_10546_317_10548_5730311_10545_10696_453_10084_454_10083_572
9211_10618_10307_538_537_536_10059_10884_10887_100031_321_322_10103_5735411,searchweb201603_51,ppc
Switch_0&algo_expid=7f5efeab-d44e-4c6e-b6a4-9a740f863f99-1&algo_pvid=7f5efeab-d44e-4c6e-b6a4-9a740f863f99

https://www.amazon.com/WYCTIN-Solder-Electrical-Soldering-0-
11lbs/dp/B071G1J3W6/ref=sr_1_3?ie=UTF8&qid=1544588613&sr=8-3&keywords=rosin+core+solder

